AP[®] CHEMISTRY 2016 SCORING GUIDELINES

Question 6

 $Ba^{2+}(aq) + EDTA^{4-}(aq) \rightleftharpoons Ba(EDTA)^{2-}(aq) \qquad K = 7.7 \times 10^7$

The polyatomic ion $C_{10}H_{12}N_2O_8^{4-}$ is commonly abbreviated as EDTA⁴⁻. The ion can form complexes with metal ions in aqueous solutions. A complex of EDTA⁴⁻ with Ba²⁺ ion forms according to the equation above. A 50.0 mL volume of a solution that has an EDTA⁴⁻(*aq*) concentration of 0.30 *M* is mixed with 50.0 mL of 0.20 *M* Ba(NO₃)₂ to produce 100.0 mL of solution.

(a) Considering the value of K for the reaction, determine the concentration of $Ba(EDTA)^{2-}(aq)$ in the 100.0 mL of solution. Justify your answer.

Based on the <i>K</i> value, the reaction goes essentially to completion. Ba ²⁺ (<i>aq</i>) is the limiting reactant. The concentration of Ba ²⁺ when the solutions are first mixed but before any reaction takes place is $0.20 M/2 = 0.10 M$.	1 point is earned for indicating that the equilibrium concentration of $Ba(EDTA)^{2-}(aq)$ is the same as the original concentration of Ba^{2+} when the solutions are mixed.
Thus the equilibrium concentration of $Ba(EDTA)^{2-}(aq)$ is 0.10 <i>M</i> .	1 point is earned for the concentration with appropriate calculations.

(b) The solution is diluted with distilled water to a total volume of 1.00 L. After equilibrium has been reestablished, is the number of moles of $Ba^{2+}(aq)$ present in the solution greater than, less than, or equal to the number of moles of $Ba^{2+}(aq)$ present in the original solution before it was diluted? Justify your answer.

The number of moles of $Ba^{2+}(aq)$ increases because the percent dissociation of $Ba(EDTA)^{2-}(aq)$ increases as the solution is diluted.	
OR	
A mathematical justification such as the following:	
The dilution from 100.0 mL to 1.00 L reduces the concentrations of all species to one tenth of their original values.	1 point is earned for stating that the number of moles of $Ba^{2+}(aq)$ will increase.
Immediately after the dilution, the reaction quotient, Q , can be determined as shown below.	
$Q = \frac{\frac{1}{10} [\text{Ba}(\text{EDTA})^{2^{-}}]}{\frac{1}{10} [\text{Ba}^{2^{+}}] \times \frac{1}{10} [\text{EDTA}^{4^{-}}]} = 10K$	1 point is earned for a valid justification.
Because $Q > K$, the net reaction will produce more reactants to move toward equilibrium, so the number of moles of Ba ²⁺ (<i>aq</i>) will be greater than the number in the original solution.	